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Syntax of Predicate Logic
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Natural Deduction for Predicate Logic
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Motivation

To show satisfiability, all you need to do is find an interpretation
where the formula is true.

Theorem

Show that 1 + 1 = 3 is satisfiable.

Proof.

Let M be
dom(M) = {1}
(+)M = {((1, 1), 1)}}
1M = 1
3M = 1

Then [[1 + 1 = 3]]M = true
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Motivation

To show non-validity, all you need to do is find an interpretation
where the formula is false.

Theorem

1 + 1 = 3 is not valid.

Proof.

Let M be any standard model of arithmetic. We have that

[[1 + 1 = 3]]M = false
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Motivation

For satisfiability and non-validity, we only needed to think about
one interpretation. For validity, you need to think about all
interpretations.

Natural deduction allows you to prove validity without thinking
about interpretations at all.
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Natural deduction for Predicate Logic

In this presentation of natural deduction, we only consider
sentences (aka formulas with no free variables).

This simplifies the presentation, and the restriction is easy to work
around: whenever you’d like a free variable, add a constant symbol
to your vocabulary.

We’ll use a, b, c for constants, t for terms, and x , y , z for variables.
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Natural deduction for Predicate Logic

Inference rules for Propositional Logic + seven rules for quantifiers
and equality

Operator Introduction Elimination
∀ ∀-I ∀-E
∃ ∃-I ∃-E
= =-I =-E1 =-E2
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Contexts

Suppose A is a sentence with one or more term-shaped holes
(written ·). Then A(t) is the result of filling all the holes with the
term t.

Example

If A is the context · = a ∧ b = · then

A(a) is a = a ∧ b = a, and

A(f (c)) is f (c) = a ∧ b = f (c)

.
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= Introduction and Elimination

=-introduction:
(=-I)

t = t

“Every term equals itself”

=-elimination (1): t = t ′ A(t)
(=-E1)

A(t ′)

=-elimination (2):
t = t ′ A(t ′)

(=-E1)
A(t)

“Equal terms have the same properties”
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Arbitrary constant symbols

A constant symbol is arbitrary if we haven’t assumed anything
about it—that is, if it does not occur in any undischarged
assumption.

Intuitively: an arbitrary constant symbol can be assigned any
element of the domain, and the formula will still hold.
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∀ Elimination

∀-elimination:
∀xA(x)

(∀-E)
A(t)

“Any property that holds in general holds for any specific
instance.”
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∀ Introduction

∀-introduction: A(c)
c not free in A
c is arbitrary

(∀-I)
∀xA(x)

“If we can prove a property about c without assuming
anything about c , then the property holds in general.”
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∀ Introduction

Without the “c is arbitrary” side condition, ∀-I would be
completely broken.

Q: Why is the following argument wrong?

Socrates is a man.
All men are mortal.

Therefore, everybody is a man.

A: Socrates is not arbitrary, so this ∀-I does not apply.
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∃ Introduction

∃-introduction:
A(t)

(∃-I)
∃xA(x)

“If t satisfies A, then something satisfies A.”
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∃ Elimination

∃-elimination:

∃xA(x)

[A(c)]

...
B

c not free in A,B

c is arbitrary
(∃-E)

B

“If a property holds about something, and an arbitrary
instance of the property has some consequence, then the
consequence holds in general. ”
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∃ Elimination

Without the “c is not free in” side condition, ∃-E would be
completely broken.

Q: Why is the following argument wrong?

Someone is hungry.
If Socrates is hungry, he eats a sandwich.

Therefore, Socrates eats a sandwich.

A: ∃-E does not apply, since Socrates is free in the conclusion of
the argument on line 2.

21



∃ Elimination

Without the “c is not free in” side condition, ∃-E would be
completely broken.

Q: Why is the following argument wrong?

Someone is hungry.
If Socrates is hungry, he eats a sandwich.

Therefore, Socrates eats a sandwich.

A: ∃-E does not apply, since Socrates is free in the conclusion of
the argument on line 2.

22



About the online checker

The version of FOL supported by the online proof checker doesn’t
have function symbols: there’s only constants and predicates.

The rules of natural deduction are the same whether function
symbols are allowed or not.
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Soundness

Theorem

Natural deduction is sound for Predicate Logic:

T ` ϕ implies T |= ϕ

Corollary

Natural deduction is consistent:

∅ 6`⊥

24



Soundness

Theorem

Natural deduction is sound for Predicate Logic:
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Completeness and Incompleteness

Confusingly, Kurt Gödel proved both of these:

Theorem (Gödel’s completeness theorem)

Natural deduction is complete for Predicate Logic:

T |= ϕ implies T ` ϕ

Theorem (Gödel’s first incompleteness theorem)

Roughly: if T is consistent, and expressive enough to do
elementary arithmetic, then there are sentences G such that neither

T ` G nor T ` ¬G
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Summary of topics

Well-formed formulas

Boolean Algebras

Valuations

CNF/DNF

Proof

Natural deduction

Bonus examples
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Proof examples

What follows is a bunch of example derivations in natural
deduction.

I do not plan to go over these in the lecture (favouring instead live
demos).
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Proof example (Fitch)

Prove: ` ∀x∀y (x = y)→ (y = x)

1. a = b

2. a = a =-I

3. b = a =-E1: 1,2

4. (a = b)→ (b = a) →-I: 1–3

5. ∀y (a = y)→ (y = a) ∀-I: 4

6. ∀x∀y (x = y)→ (y = x) ∀-I: 5
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Proof example

Prove: ∀x∀y P(x , y) ` ∀y∀x P(x , y)

Line Premises Formula Rule References

1 ∀x∀y P(x , y) Premise

2 1 ∀y P(a, y) ∀-E 1

3 1 P(a, b) ∀-E 2

4 1 ∀x P(x , b) ∀-I 3

5 1 ∀y∀x P(x , y) ∀-I 4
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